{ "cells": [ { "cell_type": "markdown", "id": "aa79e617-6b6b-4620-8c4f-808d3fca1566", "metadata": {}, "source": [ "# Parametric models\n", "Instead of setting numeric values as transition probabilities, we may also use parameters, polynomials or even rational functions in multiple variables." ] }, { "cell_type": "code", "execution_count": 1, "id": "386ffe0b-99fb-4bc4-ad93-7d5bebe3b206", "metadata": {}, "outputs": [], "source": [ "from stormvogel import parametric" ] }, { "cell_type": "markdown", "id": "e16876b3-7b6a-4555-9dd3-25015453836b", "metadata": {}, "source": [ "Polynomials are represented as dictionaries where the keys are the exponents and the values are coefficients. In addition, we must also supply a list of variable names. Rational functions are then represented as a pair of two polynomials (numerator and denominator)." ] }, { "cell_type": "code", "execution_count": 2, "id": "497f79e8-f2e1-4fe8-a64b-fba502301549", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "x^2 + y^2\n", "2.0*1 + z + 6.0*z^3\n", "(x^2 + y^2)/(2.0*1 + z + 6.0*z^3)\n" ] } ], "source": [ "polynomial1 = parametric.Polynomial([\"x\",\"y\"])\n", "polynomial1.add_term((2,0),1)\n", "polynomial1.add_term((0,2),1)\n", "\n", "print(polynomial1)\n", "\n", "polynomial2 = parametric.Polynomial([\"z\"])\n", "polynomial2.add_term((0,),2)\n", "polynomial2.add_term((1,),1)\n", "polynomial2.add_term((3,),6)\n", "\n", "print(polynomial2)\n", "\n", "rational_function = parametric.RationalFunction(polynomial1, polynomial2)\n", "\n", "print(rational_function)" ] }, { "cell_type": "markdown", "id": "424d1c58-805f-4f52-8601-4caafa06a6ea", "metadata": {}, "source": [ "To create a parametric model (e.g. pmc or pmdp) we simply have to set such a value as a transition probability. As an example, we provide the knuth yao dice, but with parameters instead of concrete probabilities." ] }, { "cell_type": "code", "execution_count": 6, "id": "9ac1f65e-ff50-49d9-9064-e7ab71b4036b", "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "fa52ffb6b6fe47ada4bfced55c053173", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "4c5639ad766c4125b677b4004f0e4a5d", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n", "\n", "\n", "
\n", "